Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine.

نویسندگان

  • Andrew J Burton
  • Kurt S Pregitzer
چکیده

Increasing global temperatures could potentially cause large increases in root respiration and associated soil CO2 efflux. However, if root respiration acclimates to higher temperatures, increases in soil CO2 efflux from this source would be much less. Throughout the snow-free season, we measured fine root respiration in the field at ambient soil temperature in a sugar maple (Acer saccharum Marsh.) forest and a red pine (Pinus resinosa Ait.) plantation in Michigan. The objectives were to determine effects of soil temperature, soil water availability and experimental N additions on root respiration rates, and to test for temperature acclimation in response to seasonal changes in soil temperature. Soil temperature and soil water availability were important predictors of root respiration and together explained 76% of the variation in root respiration rates in the red pine plantation and 71% of the variation in the sugar maple forest. Root N concentration explained an additional 6% of the variation in the sugar maple trees. Experimental N additions did not affect root respiration rates at either site. From April to November, root respiration rates measured in the field increased exponentially with increasing soil temperature. For sugar maple, long-term Q10 values calculated from the field data were slightly, but not significantly, less than short-term Q10 values determined for instantaneous temperature series conducted in the laboratory (2.4 versus 2.62.7). For red pine, long-term and short-term Q10 values were similar (3.0 versus 3.0). Sugar maple root respiration rates at constant reference temperatures of 6, 18 and 24 degrees C were measured in the laboratory at various times during the year when field soil temperatures varied from 0.4 to 16.8 degrees C. No relationship existed between ambient soil temperature just before sampling and root respiration rates at 6 and 18 degrees C (P = 0.37 and 0.86, respectively), and only a very weak relationship was found between ambient soil temperature and root respiration at 24 degrees C (P = 0.08, slope = 0.09). We conclude that root respiration in these species undergoes little, if any, acclimation to seasonal changes in soil temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of measurement CO2 concentration on sugar maple root re

to predicting belowground C cycling in forest ecosystems. Inhibition of respiration has been reported as a short-term response of plant tissue to elevated measurement [CO2]. We sought to determine if measurement [CO2] affected root respiration in samples from mature sugar maple (Acer saccharum Marsh.) forests and to assess possible errors associated with root respiration measurements made at [C...

متن کامل

Field and controlled environment measurements show strong seasonal acclimation in photosynthesis and respiration potential in boreal Scots pine

Understanding the seasonality of photosynthesis in boreal evergreen trees and its control by the environment requires separation of the instantaneous and slow responses, as well as the dynamics of light reactions, carbon reactions, and respiration. We determined the seasonality of photosynthetic light response and respiration parameters of Scots pine (Pinus sylvestris L.) in the field in southe...

متن کامل

The effects of a changing climate on root respiration of woody plants in sugar maple forests and northern peatlands

Climate change will potentially impact C cycling in terrestrial ecosystems during the next century. Plant respiration uses a significant portion of CO2 fixed during photosynthesis, and predicted warmer future temperatures could result in an exponential increase in plant respiration, increasing the amount of photosynthate returned to the atmosphere as new CO2, and decreasing the amount of C sequ...

متن کامل

Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability.

We examined fine-root (< 2.0 mm diameter) respiration throughout one growing season in four northern hardwood stands dominated by sugar maple (Acer saccharum Marsh.), located along soil temperature and nitrogen (N) availability gradients. In each stand, we fertilized three 50 x 50 m plots with 30 kg NO(3) (-)-N ha(-1) year(-1) and an additional three plots received no N and served as controls. ...

متن کامل

Contrasting Nutritional Acclimation of Sugar Maple (Acer saccharum Marsh.) and Red Maple (Acer rubrum L.) to Increasing Conifers and Soil Acidity as Demonstrated by Foliar Nutrient Balances

Citation: Collin A, Messier C, Côté B, Fontana M and Bélanger N (2016) Contrasting Nutritional Acclimation of Sugar Maple (Acer saccharum Marsh.) and Red Maple (Acer rubrum L.) to Increasing Conifers and Soil Acidity as Demonstrated by Foliar Nutrient Balances. Front. Ecol. Evol. 4:85. doi: 10.3389/fevo.2016.00085 Contrasting Nutritional Acclimation of Sugar Maple (Acer saccharum Marsh.) and Re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 23 4  شماره 

صفحات  -

تاریخ انتشار 2003